
HEAD MOTION SYNCHRONY AND ITS CORRELATION TO AFFECTIVITY IN DYADIC

INTERACTIONS

Bo Xiao†, Panayiotis G. Georgiou†, Chi-Chun Lee†, Brian Baucom‡, Shrikanth S. Narayanan†

† SAIL, Dept. Electrical Engineering, University of Southern California, Los Angeles
‡ Dept. Psychology, University of Utah, Salt Lake City, U.S.A.
boxiao@usc.edu, georgiou@sipi.usc.edu, chiclee@usc.edu

brian.baucom@psych.utah.edu, shri@sipi.usc.edu

ABSTRACT

Behavioral synchrony, or entrainment, is a phenomenon
of great interest to psychologists and a challenging construct
to quantify. In this work we study the synchrony behavior
of head motion in human dyadic interactions. We model
head motion using Gaussian Mixture Model (GMM) of line
spectral frequencies extracted from the motion vectors of
the head. We quantify interlocutor head motion similarity
through the Kullback-Leibler divergence of the GMM poste-
riors of their respective motion sequences. We use an audio-
visual database of distressed couple interactions, extensively
annotated by psychologists, to test two hypotheses using the
derived similarity measure. We validate the first hypothesis
— that people are more likely to increase their degree of syn-
chrony as the interaction progresses — by comparing the first
and second halves of the interaction. The second hypothe-
sis tests if the relative change of the similarity measure from
these two halves is significantly correlated with the behavioral
annotation by the domain experts. This work underscores the
importance of head motion as an interaction cue, and the fea-
sibility of using it in a computational model for synchrony
behavior.

Index Terms— Head motion; Synchrony; Behavioral
signal processing; Entrainment; Linear prediction; Gaussian
mixture model

1. INTRODUCTION

Many studies have reported on the phenomenon of uncon-
scious synchrony amongst interlocutors in human interac-
tions [1]. Interaction synchrony is also closely related to
concepts such as entrainment, behavioral matching, mimicry,
mirroring and so on. In general it means that certain behav-
ioral aspects of the interlocutors become similar or coordi-
nated during an interaction. Such behaviors are varied and
multimodal, and include visual and vocal cues [2] of both ver-
bal and non-verbal behavior [3]. Modeling synchrony is of
interest in many applications, including notably psychother-
apy [4], and interaction studies of mother-infant [5], teacher-
student [6], group of musicians [7], etc. Theoretical descrip-
tions of synchrony have largely been qualitative and abstract,
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and there is a great desire to devise a computational ancil-
lary that can be empirically supported by behavior data. The
present paper seeks to define such a measure for interaction
synchrony using head motion cues.

Several studies have implicated synchrony as an under-
lying mechanism characterizing behavioral patterning such
as positive affect and rapport in human interactions (e.g.,
[2, 6, 8]). Particularly, in the scenario of psychotherapy,
synchrony has also been connected with clinical outcomes
[4]. These have motivated further detailed studies, and im-
portantly, quantification of synchrony. The emerging field of
Behavioral Signal Processing (BSP) [9] is focused towards
studying human behaviors and in developing techniques to
measure, analyze, and model human behavior signals to in-
form human assessment and decision making. It is within
that framework, this work focuses on the quantitative study
of synchrony in terms of deriving a signal measure that can
explain specific behavioral patterns in human interactions.

A systematic study of behavioral synchrony needs to con-
sider multimodal aspects of the interactions, feature design,
as well as the choice of the appropriate computational ap-
proach. Delaherche et al. [10] have reviewed the multi-
disciplinary study of synchrony including computational ap-
proaches. Most previous studies reported focus on the de-
sign of automatic measurements of synchrony based on mul-
timodal signal processing techniques, and validate these mea-
surements through comparisons with human annotations or
outcomes, or through comparisons with pseudo-interactions
acting as control groups. The authors summarized mainly
three types of methods to capture synchrony (entrainment,
mimicry, etc.), such as computing the correlation of the sig-
nals from two interlocutors, comparing the phase and spec-
trum of the signals, and comparing bags of instances from
each interlocutor. In addition, Lee et al. have proposed a vo-
cal entrainment measure, which is based on the framework of
finding the principal component analysis space of one inter-
locutor and projecting the features of the other one onto this
space [2].

In this work, we study the synchrony of headmotion using
audio-visual data of real married couple interactions undergo-
ing therapy. Head motion is a useful nonverbal behavioral cue
present both when a person is a speaker and a listener in an in-
teraction. There have been prior studies adopting headmotion



as a behavior cue for the analysis of synchrony. For instance
Campbell [11] and Varni et al. [12] tracked the motion of the
head as a time sequence signal. However, they did not adopt
further segmentation or clustering of the motion.

Compared to previous works, we offer three contribu-
tions. First, we propose a data driven framework to estab-
lish a structure for characterizing head motion, via automatic
clustering of motion types. Second, we define a quantitative
measure for the degree of head motion similarity as a com-
putational ancillary to interaction synchrony, which is based
on the two bags of head motion instances from the two inter-
locutors. Third, we provide an empirical investigation of the
proposed measure with natural dyadic human interaction data
by testing the relative change of head motion similarity de-
gree during the first and second halves of an interaction, and
showing its correlation with psychologist annotated scores of
behavioral codes where synchrony is inherently implicated as
a moderating mechanism. We choose to analyze the relative
change of similarity as a dynamic aspect because it is less
studied, and not affected by the variability on the absolute
values of similarity measure for different groups of interlocu-
tors.

In the rest of the paper, we describe the data set used, the
proposed head motion model and similarity measure, and the
results of the experimental evaluation.

2. DATASET

The corpus used in this study comprises audio-visual record-
ings of seriously and chronically distressed couples having
conversations about solving a problem in their marriage; it
was collected during clinical studies conducted by the Univer-
sity of California, Los Angeles and the University of Wash-
ington [13]. Each couple talked about one problem chosen
by the wife and another by the husband, for 10 minutes each.
The analyzed data are from three points in time during the
therapy process: before the psycho-therapy began, 26 weeks
into the therapy and 2 years after the therapy session finished.
The database includes 96 hours of recordings of 574 sessions.
The video format is 704 × 480 pixels, 30 fps, with a screen
split in the middle with one spouse on each side.

The behavior of both spouses in all sessions were char-
acterized individually following two expert designed coding
systems, the Couples Interaction Rating System 2 (CIRS2)
[14] and the Social Support Interaction Rating System
(SSIRS) [15]. The CIRS2 contains 13 behavioral codes and
was specifically designed for conversations involving a prob-
lem in relationship, while the SSIRS consists of 20 codes that
measure the emotional component of the interaction and the
topic of conversation. The 33 codes are each on a numer-
ical range from 1 to 9. Each session (and each code) was
coded by at least three trained coders with a summative rat-
ing of the behavior of interest. In this paper we mainly focus
on the “affectivity ratings” component of the SSIRS system
since the role of synchrony is often implicated in affective be-
havior dynamics. We use the average score among coders as
ground truth. Note that the codes only measure how much
particular behavior patterns occur, independent of how much
their opposite occur. For example, both Global Positive and

Table 1. Affectivity codes in Social Support Interaction Rat-
ing System (SSIRS) [15]

Global Positive, Global Negative, Anger/Frustration
Belligerence/Domineering, Contempt/Disgust, Sadness
Tension/Anxiety, Defensiveness, Affection, Satisfaction

Global Negative codes could have high value if they are both
present in the interaction. A complete list of affectivity codes
considered is shown in Tab. 1.

The quality of the video recordings (done in different, real
clinical settings) is not ideal; the relative positions of sub-
jects as well as of the cameras are not fixed or known as the
database was intended originally for human analysis. To mit-
igate data quality variability, we apply a preprocessing step to
all sessions, separately on the left and right split screen con-
tent of the video. First, we run an OpenCV [16] face detector
by uniformly sampling one frame per second from the video.
Second, the face scale is estimated by the mode of the dis-
tribution of detected size of the face block. Third, we retain
sessions that have a face detected on more than 70% of the
sampled frames, and the estimated face scale is between 120
pixels and 160 pixels ( 1

4
to 1

3
of image height). Estimation

of head motion for sessions outside the above range of face
scale is less reliable with the current approach. This resulted
in 63 sessions (126 subjects) to be chosen. In these record-
ings, the upper body of a subject is captured while hands may
or may not be in the field of view. One sample video frame is
displayed in the top of Fig.1.

3. HEADMOTION MODELING

3.1. Motion estimation

Face tracking and headmotion estimation is a necessary front-
end for later steps. As this module is not the focus of our
work, we utilize a simple but effective setup. We first detect
the face in each frame (marked by a square) using the cas-
cade classifiers provided in OpenCV, and approximate face
size with the side length of the square representing face. We
slide a 5-frame window over the histogram of detected face

sizes, and choose the face size Ŝ that maximizes the sum of
the windowed histogram. In other words, we choose the most
likely face size on a smoothed histogram. We exclude out-

liers of face detection by rejecting faces with size S > 1.2Ŝ

or S < 0.8Ŝ, which are very likely to be inaccurate in locat-
ing the head. The central location of face is estimated by the
center of accepted faces. We again exclude faces with centers

that are further than Ŝ on the horizontal axis or 0.5Ŝ on the
vertical axis to the estimated central location. Then we fill the
gaps of frames missing a face by linear interpolation.

Optical flow of each pixel inside the face square is then
computed, and finally the horizontal and vertical components
of head motion are derived as the mean of horizontal and ver-
tical optical flows over all pixels within that box, respectively.
Given that the spouses remain in a sitting position throughout
the session, this simple setup satisfies our needs and produces
reliable results.
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Fig. 1. Illustration of the processing steps in Sec.3

3.2. Kinesic activity detection

We set up a Kinesic Activity Detection (KAD) step to re-
move the segments where the spouse does not move. Let
the horizontal and vertical components of the head motion
stream be Mx(t) and My(t). We use the magnitude of mo-

tion M(t) =
√

M2
x(t) +M2

y (t) as a 1D feature. We use

a 2-Mixture GMM to represent motion versus non-motion
classes, and a 2-state Hidden Markov Model (HMM) to rep-
resent the transition between the two classes. The parameters
of the GMM are initialized by selecting the top 20% high val-
uedM(t) as being in the motion class while the rest are in the
non-motion class; the initial transition probability of HMM is
set to 0.9 for self-transition. The Expectation-Maximization
(EM) algorithm is applied to obtain the maximum likelihood
estimation of the states. Moreover, we post-process the state
sequence by smoothing over short pauses (less than 0.2 sec-
onds) when both sides of the detected pause are motion se-
quences longer than 1 second. Then we eliminate motion se-
quences that are less than 1 second, which are assumed to be
noise in our model. An example of the KAD result is shown
in Fig.1.

3.3. Motion transformation and windowing

Since the interacting spouses were sitting in arbitrary pos-
tures, the main directions of their head movements are hence
not necessarily 0 or 90 degrees. We apply a Principal Compo-
nent Analysis to the raw motion stream so as to align the main

directions, as illustrated in Fig.1. We do a Z-normalization to
the two dimensions of aligned motion streams (empirically
found to be in a bell shape with heavy tails). The motion
segments may have varying durations and contain a group of
consecutive movements. These heterogeneous types of mo-
tions should be analyzed separately, so further segmentation
within a motion segment is needed. Hence, for the analyses
that follow, we apply a short time sliding window over each
motion segment, with window length being 2 seconds, and
window shift being 1 second. If the motion segment is less
than 3 seconds then we do not window it further. Therefore,
the windowed motion sequences could have length between 1
to 3 seconds.

3.4. Linear prediction features

We propose to use parameters derived through Linear Pre-
diction (LP) as a transformed representation of the motion
sequences for several reasons. First, assuming that head mo-
tion sequences can be viewed as being generated by an auto-
regressive process, LP offers a powerful way to capture the
dynamic properties of various motion types. Second, LP
is preferred over other methods such as vector quantization,
because the motion sequences obtained through windowing
may not be exactly aligned with the onset of motion. Third,
LP provides the convenience of consistent feature dimen-
sion (equal to the LP order), while the windowed motion se-
quences are in varying lengths. We adopt the Line Spectral
Frequencies (LSF) representation of LP [17], which is widely
used in speech coding due to its better quantization properties.

We compute the LSF for horizontal and vertical com-
ponents respectively, then concatenate the two components.
In the couples interaction database we use for the study,
the wives are denoted by w1 to w63, and husbands by h1
to h63. Let j ∈ {w1, h1, w2, h2, · · · , w63, h63} be a general
index of any session and subject. Let Li

j = [Lxi
j Lyij]

be the LSF of the i-th motion sequence in the j-th record-
ing, and Lxi

j = {lxi
j(n)}

N
n=1 be the horizontal component,

Lyij = {lyij(n)}
N
n=1 be the vertical component, where N is

the order of LSF analysis. The constants lxi
j(0) ≡ 1 and

lyij(0) ≡ 1 are omitted from the feature representation. As a
result, we have a 2N -dim feature for each motion sequence.

3.5. Gaussian mixture of head motion

Our goal is to compute a structure for characterizing head mo-
tion through statistical clustering. Here we construct a GMM
with LSF features. We use the posterior probability of each
feature instance as a soft cluster label. To train the GMM
we pool all sessions together and conduct the training on all
motion sequences. The K-mixture GMM is initialized by a
K-means procedure, and iteratively optimized using the stan-
dard EM algorithm.

However, since the adopted GMM approach is unsuper-
vised with the initialization being random, a single GMM
does not guarantee good representation of head motion types.
In the following sections, we base our analysis on multiple
GMMs, which are initialized randomly on the same data.

Let πk be the prior probability, µk = {µk(n)}2Nn=1
be the

mean vectors, and σk = {σk(n)}2Nn=1
be the variance vector,



i.e., the diagonal of the assumed diagonal covariance matrix
corresponding to the feature vector of dimension 2N . The
likelihood probability is given by P (Li

j |k) = N (Li
j ;µk, σk),

and the posterior probability is given by Eq.(1).

P (k|Li
j) =

πkP (Li
j|k)

∑K

k′=1
πk′P (Li

j|k
′)
, k = 1 · · ·K. (1)

4. HEAD MOTION SYNCHRONYMEASUREMENT

4.1. Similarity as lower tail of divergence distribution

For each subject in a session, there is a bag of motion se-
quences. Specifically, let w ∈ {w1, w2, · · · , w63}, h ∈
{h1, h2, · · · , h63}. We denote the bag of motion sequences
of the wife w as Bw, and that of the husband h as Bh, e.g.,
Bw1

= {Li
w1
}Ii=1

, where I is the total number of motion se-
quences for w1.

We adopt the Kullback-Leibler (KL) divergence to com-

pute the similarity between two motion instances Li
w and Li′

h

as in Eq.(2). In order to avoid numerical instability caused
by zero values in the posterior, we add a small positive value
ǫ = 1× 10−5 to all elements of the posterior probability and
re-normalize.

KL(Li
w, L

i′

h ) =

K
∑

k=1

P (k|Li
w)log

P (k|Li
w)

P (k|Li′

h )
(2)

Based on the KL divergence, we obtain the proposed sim-
ilarity measure. Let the similarity function over the two bags
of motion sequences be sim(Bw,Bh, ρ), where ρ is a per-
centile parameter. The procedure is described as follows.

1. Compute pairwise KL divergence for all pairs of mo-
tion instances in Bw and Bh, resulting in a matrix

SIMI×I′ = {KL(Li
w, L

i′

h )}.

2. Convert the matrix SIMI×I′ to a single vector and sort
by ascending order, resulting in a new vector S.

3. Obtain sim(Bw,Bh, ρ) as the mean value of S from the
smallest element to the ρ percentile.

The motivation of having the parameter ρ is to capture
any similar motion sequences, regardless of if there are very
different ones in the same bags of motion sequences. For
computational simplicity we do not match motion sequences
one-to-one or group-to-group, but take the mean of pair-
wise KL divergence as an averaged measure. We also obtain
sim(Bh,Bw, ρ) in a similar manner. Note that it is not equiv-
alent to sim(Bw,Bh, ρ) as KL divergence is non-symmetric.

4.2. Dynamics of synchrony degree

We analyze the synchrony dynamics during the interaction at
a very basic level, by computing the relative change of simi-
larity measure over the first and second halves of the session,
denoted by R. We do not further divide the session in this
study, since the motion instances may become sparse in short

duration. The bags of motion sequences in the first and sec-
ond halves are denoted B1

w and B2

w for the wife, respectively,
and similarly for the husband.

Due to the unsupervised nature of the derived GMM, a
single GMM derived by random initialization might not con-
verge in the direction aligned with the behaviors of interest.
Therefore, we train an ensemble of M GMMs over the same
data with different initializations, and use the average of R as

a more robust measure. Let a single R̃ be the result of one
GMM, as in Eq.(3). We then define R(w, h) as in Eq.(4),
converted to a log scale. Similarly we can obtain R(h,w).
Note that a smaller value of R(w, h) or R(h,w) means lower
divergence and greater similarity.

R̃ =
sim(B2

w,B
2

h, ρ)

sim(B1
w,B

1

h, ρ)
(3)

R(w, h) = log(
1

M

M
∑

m=1

R̃m) (4)

5. HYPOTHESES TESTS AND EXPERIMENT
RESULTS

To explore the usefulness of the proposed similarity mea-
sure, we consider two hypotheses, inspired by qualitative de-
scriptions offered by domain experts. The first one tests the
hypothesis that synchrony increases as the interaction pro-
gresses. The second one tests the relation between the relative
change of the proposedmeasure and affective behavior, where
synchrony has been theoretically implicated by psychologists.

5.1. Hypotheses tests

We consider the relative change of similarity measure on an
individual basis. Let R = {R(wl, hl)} ∪ {R(hl, wl)} where
l = 1, 2, · · · , 63. Let Y = {Y (wl)} ∪ {Y (hl)} be the be-
havior codes on affectivity as in Tab. 1. The KL divergence

KL(Li
h, L

i′

w)measures the information loss when the posterior

of Li′

w is used to approximate that of Li
h [18]. In other words,

when the husband’s movements are considered as reference,
we use the wife’s movements to approximate those. If the
wife has a high level of synchrony to the husband, then the
approximation should come with low divergence, hence we
investigate the relation of the R(hl, wl) value with the wife’s
behavior codes Y (wl). Similarly, Y (hl) is viewed in relation-
ship to R(wl, hl).

The first hypothesis test is binomial test on whether r ∈ R
is more likely to be smaller than 0. The two hypotheses are:

H10 whether r ≥ 0 or r < 0 is random, i.e., 50% chance.

H1a there are more subjects having r < 0, i.e., as inter-
actions progress it is more likely that divergence de-
creases, hence synchrony increases.

The second hypothesis test uses the Student’s t-
distribution to test the presence of Pearson’s correlation co-
efficients betweenR and Y . The two hypotheses are:
H20 R and Y are uncorrelated.

H2a there is some correlation betweenR and Y .



5.2. Experiment setting

The order of LSF in our feature analysis was set to 10, as
we empirically found higher order does not offer any further
advantage. We set the GMM ensemble size M to 50, as a
trade-off between having an adequate number of GMMs to
increase robustness and assuring affordable computation.

Previous research in psychology has suggested six classes
of head motion [19]. Guided by this, we employed 4 to 12
mixtures for each GMM (K = 4, 5, · · · , 12), since we ex-
pected the automated clustering to capture a finer structure of
head motion than manual labeling. We conducted the experi-
ments with a sampling on the parameter ρ (0 < ρ < 1) from
0.05 to 0.5, with a step size 0.05.

We found that there were sessions with extreme values of
R, which were found to have very noisy video data. In order
to avoid the influence of outliers in computing correlation, we
exclude sessions of the top 3% largest |r| values (on two tails
in logarithm domain) for each test of correlation.

Moreover, to verify that any found correlations are mean-
ingful effects of the interaction, we conducted the correla-
tion analysis with random pairings of wives and husbands. In
other words, the synchrony degree and relative change were
also computed based on subjects who did not meet with each
other (i.e., not “true” couples). We repeated the shuffling for
100 times.

5.3. Results and discussion

We compute the percentile of subjects having r < 0 as in hy-
pothesisH1, summarized in Fig. 2. Each row represents one
value of K and each column represents one value of ρ. In
binomial test with sample size 122 (excluding outliers), per-
centile of 61% has one-tail p-value of 0.01. Therefore,H10 is
rejected with p ≤ 0.01 for all parameter choices but for a few
exceptions. This supports the notion that the phenomenon of
head motion synchrony in dyadic interaction is reflected by a
tendency of increased similarity of head motion towards the
other interlocutor.
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We next compute Pearson’s correlation of the proposed
synchrony measureR and the expert-specified behavior code
Y under various experimental settings. The correlations are
more consistently significant with ρ = 0.05. Among the af-
fectivity codes, Global Positive, Global Negative, Affection,
Satisfaction are significantly correlated with R, in addition
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Fig. 3. Correlation betweenR and Y

Table 2. Correlation of R and Y in random pairing of inter-
locutors (K = 10, ρ = 0.05)

Code Posit. Negat. Affect. Satisf. Humor

Mean -0.01 -0.02 0.02 0.01 -0.01
Std 0.09 0.08 0.09 0.10 0.08

to the code of Use of humor. The correlation obtained with
varyingK and ρ are shown in Fig. 3.

Specifically, positive affect codes are negatively corre-
lated with R, i.e., the more positive attitude the subjects
shows, the smaller the derived divergence measure R is. In
other words, spouses having positive affect are associated
with an increasing degree of synchrony along the interaction.
Similarly, the negative affect code Global Negative is posi-
tively correlated with R, suggesting that spouses having neg-
ative affect are associated with a decreasing degree of syn-
chrony along the interaction.

The higher significance with ρ = 0.05, i.e., only the 5%
smallest divergence pairs, lends support to the intuition that
capturing the most salient synchrony pairs of motion is more
important than taking the overall average of pairwise diver-
gence. We also see in this experiment that the correlations are
in general high with K = 5 and K = 10. We want to further
study the effect ofK in future.

In addition, we report the experiment results of random
pairing with K = 10 and ρ = 0.05. In Tab. 2 the mean
and standard deviation of correlations are listed for each af-
fectivity code. None of the mean correlations are significant
(p < 0.05), and any significant value is beyond at least one
standard deviation. Furthermore, there are 83, 14, 2, 0 and 1
times that random pairings have, respectively 0, 1, 2, 3 and
4 codes associated with significant correlation. Compared to
the result in Fig. 3, the results of the randomized experiment
suggest that although a spurious high correlation could exist
in some randomly paired interactions, this does not generally
happen.

6. CONCLUSION

We studied the synchrony phenomenon of head motion mani-
fested in human dyadic interactions using a quantitative mea-
sure of similarity. To facilitate the analysis, we designed
a structural model of head motion, using Gaussian Mixture



Models over line spectral frequencies of head motion se-
quences. Based on the GMMs, any two head motion in-
stances are compared through KL divergence of their respec-
tive model posterior probabilities. We define a similarity mea-
sure of head motion utilizing the KL divergence. Finally, we
compute the relative change of head motion similarity dur-
ing the first half and the second half of the interaction. Ex-
periment results focused on two aspects of the proposed syn-
chrony measure in light of qualitative descriptions that have
been offered by behavioral science experts. First, there are
more subjects with a higher degree of synchrony (a smaller
value of divergence) in the second half of the conversation,
which suggests a rise of synchrony as the interaction pro-
gresses, consistent with what is expected. Second that the
relative change in the similarity measure is correlated with
multiple behaviors as annotated by human experts, and where
synchrony dynamics have been implicated in describing the
underlying behavior mechanisms. These findings demon-
strate the usefulness of the proposed head motion modeling
approach and the derived synchrony measure.

The study of head motion as an indicator of specific be-
havior expression is a topic of on-going work, and much re-
mains to be done. For example, in our future work we would
like to analyze the derived GMM classes in collaborationwith
domain experts to better interpret the automatic modeling re-
sults. We would also like to study the dynamics of synchrony
over finer temporal resolutions and investigate the relation of
synchrony with finer behavior traits such as reactivity. More-
over, we have so far studied synchrony in acoustic and visual
modalities separately, but we intend to investigate joint mod-
els of multimodal behaviors in the future.
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